1,559 research outputs found

    On Theoretical Uncertainties of the W Angular Distribution in W-Pair Production at LEP2 Energies

    Get PDF
    We discuss theoretical uncertainties of the distribution in the cosine of the W polar angle projected into a measurement of the anomalous triple gauge-boson coupling \lambda=\lambda_{\gamma}=\lambda_Z at LEP2 energies for the tandem of the Monte Carlo event generators KoralW and YFSWW3 and for the Monte Carlo event generator RacoonWW. Exploiting numerical results of these programs and cross-checks with experimental fitting procedures, we estimate that the theoretical uncertainty of the value of \lambda due to electroweak corrections, as obtained at LEP2 with the help of these programs, is ~0.005, about half of the expected experimental error for the combined LEP2 experiments (~0.010). We use certain idealized event selections; however, we argue that these results are valid for realistic LEP2 measurements.Comment: 14 pages, 3 Postscript figure

    ATLAS Distributed Data management Operations

    Get PDF
    ATLAS Distributed Data Management (DDM) service is developed for data transfer between ATLAS sites and for data cataloguing. The Data Management Software (SW) is based on DQ2 and end-users tools (aka dq2_get package). In this paper we address the issue of DDM day-by-day operation, DDM operations team organization, roles and responsibilities of Tier-1s and Tier-2s DDM coordinators

    Breakdown of Conformal Invariance at Strongly Random Critical Points

    Full text link
    We consider the breakdown of conformal and scale invariance in random systems with strongly random critical points. Extending previous results on one-dimensional systems, we provide an example of a three-dimensional system which has a strongly random critical point. The average correlation functions of this system demonstrate a breakdown of conformal invariance, while the typical correlation functions demonstrate a breakdown of scale invariance. The breakdown of conformal invariance is due to the vanishing of the correlation functions at the infinite disorder fixed point, causing the critical correlation functions to be controlled by a dangerously irrelevant operator describing the approach to the fixed point. We relate the computation of average correlation functions to a problem of persistence in the RG flow.Comment: 9 page

    A topological Dirac insulator in a quantum spin Hall phase : Experimental observation of first strong topological insulator

    Get PDF
    When electrons are subject to a large external magnetic field, the conventional charge quantum Hall effect \cite{Klitzing,Tsui} dictates that an electronic excitation gap is generated in the sample bulk, but metallic conduction is permitted at the boundary. Recent theoretical models suggest that certain bulk insulators with large spin-orbit interactions may also naturally support conducting topological boundary states in the extreme quantum limit, which opens up the possibility for studying unusual quantum Hall-like phenomena in zero external magnetic field. Bulk Bi1x_{1-x}Sbx_x single crystals are expected to be prime candidates for one such unusual Hall phase of matter known as the topological insulator. The hallmark of a topological insulator is the existence of metallic surface states that are higher dimensional analogues of the edge states that characterize a spin Hall insulator. In addition to its interesting boundary states, the bulk of Bi1x_{1-x}Sbx_x is predicted to exhibit three-dimensional Dirac particles, another topic of heightened current interest. Here, using incident-photon-energy-modulated (IPEM-ARPES), we report the first direct observation of massive Dirac particles in the bulk of Bi0.9_{0.9}Sb0.1_{0.1}, locate the Kramers' points at the sample's boundary and provide a comprehensive mapping of the topological Dirac insulator's gapless surface modes. These findings taken together suggest that the observed surface state on the boundary of the bulk insulator is a realization of the much sought exotic "topological metal". They also suggest that this material has potential application in developing next-generation quantum computing devices.Comment: 16 pages, 3 Figures. Submitted to NATURE on 25th November(2007

    Relationship Between Serum NMDA Receptor Antibodies and Response to Antipsychotic Treatment in First-Episode Psychosis

    Get PDF
    Background: When psychosis develops in NMDA receptor (NMDAR) antibody encephalitis, it usually has an acute or subacute onset, and antipsychotic treatment may be ineffective and associated with adverse effects. Serum NMDAR antibodies have been reported in a minority of patients with first-episode psychosis (FEP), but their role in psychosis onset and response to antipsychotic treatment is unclear. Methods: Sera from 387 patients with FEP (duration of psychosis <2 years, minimally or never treated with antipsychotics) undergoing initial treatment with amisulpride as part of the OPTiMiSE (Optimization of Treatment and Management of Schizophrenia in Europe) trial (ClinicalTrials.gov number NCT01248195) were tested for NMDAR IgG antibodies using a live cell–based assay. Symptom severity was assessed using the Positive and Negative Syndrome Scale and the Clinical Global Impressions Scale at baseline and again after 4 weeks of treatment with amisulpride. Results: At baseline, 15 patients were seropositive for NMDAR antibodies and 372 were seronegative. The seropositive patients had similar symptom profiles and demographic features to seronegative patients but a shorter duration of psychosis (median 1.5 vs. 4.0 months; p =.031). Eleven seropositive and 284 seronegative patients completed 4 weeks of amisulpride treatment: after treatment, there was no between-groups difference in improvement in Positive and Negative Syndrome Scale scores or in the frequency of adverse medication effects. Conclusions: These data suggest that in FEP, NMDAR antibody seropositivity alone is not an indication for using immunotherapy instead of antipsychotic medications. Further studies are required to establish what proportion of patients with FEP who are NMDAR antibody seropositive have coexisting cerebrospinal fluid inflammatory changes or other paraclinical evidence suggestive of a likely benefit from immunotherapy

    Hadron Energy Reconstruction for the ATLAS Calorimetry in the Framework of the Non-parametrical Method

    Get PDF
    This paper discusses hadron energy reconstruction for the ATLAS barrel prototype combined calorimeter (consisting of a lead-liquid argon electromagnetic part and an iron-scintillator hadronic part) in the framework of the non-parametrical method. The non-parametrical method utilizes only the known e/he/h ratios and the electron calibration constants and does not require the determination of any parameters by a minimization technique. Thus, this technique lends itself to an easy use in a first level trigger. The reconstructed mean values of the hadron energies are within ±1\pm 1% of the true values and the fractional energy resolution is [(58±3)/E+(2.5±0.3)[(58\pm3)% /\sqrt{E}+(2.5\pm0.3)%]\oplus (1.7\pm0.2)/E. The value of the e/he/h ratio obtained for the electromagnetic compartment of the combined calorimeter is 1.74±0.041.74\pm0.04 and agrees with the prediction that e/h>1.7e/h > 1.7 for this electromagnetic calorimeter. Results of a study of the longitudinal hadronic shower development are also presented. The data have been taken in the H8 beam line of the CERN SPS using pions of energies from 10 to 300 GeV.Comment: 33 pages, 13 figures, Will be published in NIM

    Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of √s=13  TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139  fb−1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015–2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV

    Search for high-mass resonances decaying to dilepton final states in pp collisions at s√=7 TeV with the ATLAS detector

    Get PDF
    The ATLAS detector at the Large Hadron Collider is used to search for high-mass resonances decaying to an electron-positron pair or a muon-antimuon pair. The search is sensitive to heavy neutral Z′ gauge bosons, Randall-Sundrum gravitons, Z * bosons, techni-mesons, Kaluza-Klein Z/γ bosons, and bosons predicted by Torsion models. Results are presented based on an analysis of pp collisions at a center-of-mass energy of 7 TeV corresponding to an integrated luminosity of 4.9 fb−1 in the e + e − channel and 5.0 fb−1 in the μ + μ −channel. A Z ′ boson with Standard Model-like couplings is excluded at 95 % confidence level for masses below 2.22 TeV. A Randall-Sundrum graviton with coupling k/MPl=0.1 is excluded at 95 % confidence level for masses below 2.16 TeV. Limits on the other models are also presented, including Technicolor and Minimal Z′ Models

    Standalone vertex finding in the ATLAS muon spectrometer

    Get PDF
    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011

    Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC

    Get PDF
    Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, H →γ γ, H → Z Z∗ →4l and H →W W∗ →lνlν. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV, corresponding to an integrated luminosity of about 25 fb−1. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined fits probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson
    corecore